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ABSTRACT: The chemical bonding schemes of thallium cluster
anions commonly comply with neither Wade−Mingos’s rules nor
the Zintl−Klemm concept and thus far have escaped a fully
consistent description. In general, the number of electrons available
for the cluster skeleton bonding fall below those required according
to the qualitative concepts mentioned and the clusters were labeled
“hypoelectronic”. Based on fully relativistic band structure
calculations on respective complete extended solids and electronic
structure calculations on excised, charge compensated, and geo-
metrically optimized clusters, we have identified two mechanisms that are suited to lift the degeneracy of partially filled electronic
states and to open a HOMO−LUMO gap, the Jahn−Teller effect and relativistic spin−orbit coupling. Treatment on this level of
theory shows that, in accordance with experiment, the thallium cluster anions known are electronically saturated and not deficient
in valence electrons. We provide qualitative group theoretical procedures for analyzing the Jahn−Teller effect and spin−orbit
coupling in lifting the degeneracy of frontier orbitals in highly symmetric thallium cluster anions.

■ INTRODUCTION
A stable chemical configuration corresponds to a locally ergodic
region on the energy landscape of chemical matter1 and
features, at the given boundary conditions, a specific
equilibrium structure, a distinct electronic ground state, and a
characteristic set of properties. All these attributes, in principle,
can be revealed experimentally, or computationally by solving
Schrödinger’s equation. However, quantitative numerical
descriptions as achieved by calculations usually provide huge
arrays of continuously varying data. Thus, such approaches,
although delivering physically correct descriptions, generate
results that are hardly comprehensible by human brain and do
not furnish “understanding”.2 However, a “conceptual
comprehension” is a necessary prerequisite for communicating
and teaching science, and moreover, for developing creativity in
research planning. For these reasons, the results of quantitative
calculations used to be, and still need to be, cast in “concepts”.3

Although one has to pay the price of, e.g., loss of information,
deformation of the reality, squeezing continuous variations into
rigid and far too coarse grids, or partitioning properties, which
are intrinsically continuous, into discrete increments, such
strategy has a long tradition in chemistry and its virtue is
beyond question.
Probably the most widely used conceptual approaches are

aiming at classifying the chemical bond by type and strength.
The latter hierarchical point of view is particularly well suited to
partition extended solids. For crystalline solids consisting of
molecules, where the intra- and intermolecular bonds are easily
discernible by length and strength, this is obviously a beneficial
procedure.
This way of analyzing solids is losing stringency, however,

with the bonds approaching balance until equivalence. Among

the tremendous diverseness of combinations encountered in
chemistry, solid materials featuring well-distinguishable ho-
moatomic substructures, i.e., clusters, which can be excised
from the extended crystal structures by imagination or in
reality, have attracted a lot of interest. For such cluster
compounds a rather efficient set of qualitative tools for
classification and stability assessing has become available. The
Zintl−Klemm4−6 concept and Wade’s rules (extended by
Mingos)7−9 are among the most prominent ones. Their great
popularity is based on simplicity and quite general validity. In a
sense, the Zintl−Klemm concept and Wade’s rules are
complementary, as can be seen when inspecting clusters from
the third group elements. Wade’s rules give an excellent
account of the systematics of boranes, while the Zintl−Klemm
concept appears to be superior when analyzing, e.g., aluminides.
Against the background of the success of the available cluster
concepts, it is quite puzzling to see them fail in the special case
of thallium clusters, and it comes as a kind of historical irony
that Zintl’s initial touchstone at developing his concept was the
3D-infinite [Tl−]n network in NaTl.4,10

Corbett and co-workers have explored and documented to a
large extent the meanwhile rather extended and manifold class
of Tl clusters.11 It is extraordinary that most of them do not
have sufficient skeletal electrons as required by the Wade−
Mingos rules (at least 2n+2 skeletal electrons for a Tln cluster).
They have thus been classified as “hypoelectronic” considering
the thallium 6s orbitals as “inert”, i.e., not contributing to the
cluster bonding. This effect is basically related to the scalar
relativistic stabilization of the s-orbitals of heavy elements.12
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Some preliminary studies with extended Hückel theory (EHT)
calculations have been done; however, there is no systematic
investigation yet and neither is there a fully satisfying
rationalization given.
One convincing argument, though, is the Jahn−Teller (JT)

effect. Respective Tl clusters adopt structures different from the
deltahedral shapes required by Wade−Mingos rules. They are
lower in symmetry and require less skeletal electrons to fill the
bonding molecular orbitals (MOs) and to reach a significant
HOMO−LUMO gap resulting in a close-shell electronic
configuration. The JT effect can successfully rationalize the
structures of “compressed” (D4h and ∼D4h) [Tl6]

6−, [Tl7]
7−,

and [Tl9]
9−.10,13−18 However, this effect does not apply to all of

the “hypoelectronic” Tl clusters. Actually, it fails in the case of
the almost nondistorted octahedral (∼Oh) [Tl6]

6−, in
Cs4Tl2O,

19 which has virtually no JT distortion, and it can
neither satisfactorily rationalize the tetrahedral star (Td) [Tl8]

6−

in Cs18Tl8O6.
20 We thus note that there is no consistent model

yet that allows us to analyze the chemical bonding in
homoatomic Tl clusters. It is, therefore, necessary and
beneficial to conduct a systematic investigation into these

“hypoelectronic” Tl clusters to obtain a deeper and more
comprehensive understanding of their bonding systematics.
An important factor that has been for long neglected are the

nonscalar relativistic effects, especially spin−orbit coupling
(SOC), which is not significant for light elements like boron
but much more relevant for heavy elements like thallium.12,21,22

In this contribution we demonstrate that the apparent
peculiarities of the cluster chemistry of thallium can be resolved
by considering SOC as a significant factor of influence, in
addition to JT distortions, that can lift degeneracy of partially
filled frontier orbitals, thus stabilizing particular cluster
geometries. Our studies have further revealed that the
respective ground state configurations realized benefit to
different degrees from either JT or SOC, and in some cases
the existence of highly symmetric clusters can only be
rationalized on the basis of SOC.

■ LITERATURE SURVEY OF HOMOATOMIC TL
CLUSTERS

A broad spectrum of Tl clusters has been observed in
intermetallics and suboxides. From the available comprehensive
reviews and more recent literature, all the principle

Table 1. Survey of Homoatomic Tl Clusters

aTo save space, when clusters from different compounds have similar structures, only one sketch is given. bM = Mg, Zn, Cd, Hg. cA = alkaline
metals.
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configurations known for homoatomic Tl clusters were
gathered and tabulated in Table 1. In addition, a number of
centered and heteroatomic Tl clusters are known.11 Including
them would require to consider qualitatively different aspects of
cluster bonding, which is beyond the scope of this present
study.
All the clusters compiled in Table 1 are isolated. No covalent

exobonds like the B−H bonds in boranes or intercluster bonds
in, e.g., Rb2In3

23,24 are present. Even in the suboxides, the
clusters are exclusively surrounded by electropositive elements.
Assuming complete charge transfer according to the Zintl−
Klemm concept, highly negative formal cluster charges result.
Besides the charges, another formal descriptor characterizing
the clusters, the number of skeletal electrons contributing to
the intracluster bonds, is listed in Table 1. This number is the
sum of the thallium 6p electrons, one per atom, plus the
absolute value of the formal charge.
Some examples shown in Table 1 document a conspicuous

feature of the thallium cluster chemistry. Despite an identical
atom number and electron count, clusters may exhibit different
shapes. They even may adopt high symmetry, which would, in a
conventional point of view, suggest partially filled frontier
orbitals, in contrast to the experimental observations. A
remarkable representative is the [Tl8]

6− cluster. It exists with
the shape of a parallelepiped (D3d) in Cs8Tl8O

25 and as
tetrahedral star (Td) in Cs18Tl8O6.

20 The latter cluster is the
first thallium cluster, were the relevance of SOC at lifting the
degeneracy of the cluster HOMO was demonstrated.20 Another
example19 is [Tl6]

6−, which exists both as a regular and as a
highly JT distorted octahedron. This cluster will serve as a
prototype in the further discussion.
Summing up, in analyzing the bonding characteristics of

homoatomic thallium clusters, it is indispensable to consider
(a) the interplay or competition of the JT effect and SOC in
achieving closed-shell electronic configurations and (b) the
interaction of itinerant electrons with the cluster orbitals in
metallic systems.
In the next section we present the computational methods

involved in deciphering the chemical bonding in the thallium
clusters studied here. Each cluster specified in Table 1 is
embedded in a crystalline compound, thus the “correct”
description of the respective electronic structure requires
periodic band structure calculations. Yet, it is far from trivial
to extract a meaningful cluster MO picture from the resulting
data. However, comparing cluster calculations and periodic
ones will facilitate the analysis of the various aspects of cluster
bonding.20

■ COMPUTATIONAL METHODS
All the calculations on clusters and solids were performed with and
without periodic boundary conditions, respectively, in the framework
of density functional theory (DFT), applying the GGA-functional
(generalized gradient approximation) proposed by Perdew, Becke and
Ernzerhof,32 in order to ensure a comparable description of exchange
and correlation with the various approaches. Spin-polarized systems
were computed with the unrestricted Kohn−Sham (UKS) formalisms,
i.e., solving separate Kohn−Sham equations for α- and β-spin. In this
section, only a general overview of the computational parameters is
given. Further details like k-point meshes, cutoffs, atomic radii, and so
forth for specific systems and calculations can be found in the
Supporting Information.
Band structures and properties of the crystalline systems, based on

the respective experimental structure, are computed with either or
both of the two program packages, WIEN2k33 and VASP.34 The two

codes differ in the approach of augmenting the plane-wave basis set.
With WIEN2k, in general, the augmented-plane-wave plus local orbital
(APW+lo) basis35,36 was used. VASP calculations were based on the
projector augmented-wave (PAW) method.37,38 With these augmen-
tations, both codes yield all-electron band structures and densities in a
scalar relativistic approximation.39 SOC can be included in WIEN2k
by a second variational method.40 In VASP the implementation is
based on the code for the description of noncollinear magnetic
structures.41 In the latter case, use of symmetry was switched off.

Cluster calculations for specific configurations, minimum searches
and scans through the energy landscape were performed with the
TURBOMOLE program package.42 Due to the high negative charge of
the naked Tl clusters, they were embedded in a shell of alkaline atoms,
capping the faces of the polyhedron (for example, as shown in Figure
7). The overall charge of this arrangement was chosen to mimic a
certain formal charge, i.e., [K8Tl6]

2+ or [Cs8Tl6]
2+ for [Tl6]

6− or Cs8Tl6
for [Tl6]

8−.
Scalar relativistic contributions were included in the cluster

calculations with the standard RI-DFT43 code by choosing appropriate
pseudopotentials, leaving 21 electrons for Tl44 and 9 electrons for Cs45

in the valence shell. The def2-TZVP basis set46 was used. For
relativistic calculations including SOC, the two-component formalism
as implemented in TURBOMOLE47 was applied. In this case, the
spin−orbit terms44 had to be added to the thallium pseudopotential,
and the modified def2-TZVP-2c basis set48 was used. With the present
implementation, no spacial symmetry operations could be exploited.
The existence of local minima in the energy landscape was verified by
the analysis of the Hessian matrix. In the case of the two-component
formalism, the Hessian matrix had to be determined by numerical
differentiation (script NumForce).

As the two-component Hamiltonian includes the 2 × 2 Pauli
matrices, the resulting one-particle functions are two-component,
complex spinors (eq 1)
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In contrast to the orbitals obtained in a non- or scalar relativistic
treatment, spin and orbital momenta are coupled with these spinors,
and spin is no longer an observable. However, in order to characterize
the clusters in terms of closed- or open-shell systems, the number of
unpaired electrons (NS) can be determined according to eq 2

= ⟨ ⟩ + ⟨ ⟩ + ⟨ ⟩N S S S2S x y z
2 2 2

(2)

Sx, Sy, and Sz are the spin components in the direction of the
respective Cartesian axis. NS is always an integer in scalar relativistic
calculations, it may take any positive real value when SOC is
considered.

Besides the above-mentioned quantum mechanical program
systems, a set of further programs were used. With Critic,49 topological
analyses of the WIEN2k densities were performed, in order to obtain
effective charges of the atoms. Isosurfaces of orbitals or electron
densities were either plotted with XCrySDen50 or with VESTA.51

■ DOUBLE GROUP APPROACH
In non- or scalar relativistic quantum chemistry, generally spin-
free Hamiltonians are used. The symmetry of the resulting one-
particle eigenfunctions, the orbitals, corresponds to the
irreducible representations (irrep) of the point group of the
molecule or of the space group of the crystal, respectively. The
spin-free treatment yields only half of the states in the
eigenvalue spectrum, called the “duplexity phenomena” by
Dirac.52 This dilemma can be overcome by allowing double
occupancy of the orbitals, thus counting them twice.
The full spectrum is obtained by using a Lorentz invariant

Hamiltonian or by including Pauli spin matrices, thereby
considering SOC. The resulting, singly occupied eigenfunctions
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are called spinors (cf. Computational Methods). Point groups
now are no longer appropriate to describe their symmetry.
Spinors have fermionic (spin 1/2) properties, and a rotation
about 360°, which is the identity operation in point groups,
changes the sign of the spinor. The double group approach is
one solution for this problem. A new symmetry element Q
(360° rotation) is introduced, which is not the identity. Appling
Q twice, i.e., a 720° rotation, results in the new identity
element. Considering all products of Q with the elements of the
point group leads to the double point group with doubled
group order. The irreps of the double point group are either
symmetric (vector irreps) or antisymmetric (spinor irreps) with
respect to Q. Only the spinor irreps apply to fermionic systems.
Detailed information about double groups can be found in

group theory textbooks.53,54 Here we review exemplarily the Oh
group and the Oh* double group as they are relevant for the
octahedral [Tl6]

6− clusters discussed later. The point group Oh
has 48 elements in 10 classes and 10 vector irreps as shown in
Table 2 with the bold fonts. When spin is considered, Oh needs
to be expanded to its double group Oh*, which has 96 elements
in 16 classes and, besides the 10 vector irreps, 6 spinor irreps
(E1/2,g to F3/2,u).

55 The correlation between vector and spinor
irreps can be obtained by taking the direct products between
vector irreps and E1/2,g, the latter of which is the irrep spanned
by the elementary spinor (α, β), see Table 3.
Our attention is drawn by the triple degenerate vector irreps,

T1g, T2g, T1u, and T2u. If they are partially filled in a spin-free

treatment, they may give rise to a JT distortion. The degenerate
MOs are then split due to a symmetry reduction. When SOC is
considered, e.g., the T1u orbitals with maximally 6-fold
occupancy split into two sets of spinors, double degenerate
E1/2,u and quadruple degenerate F3/2,u, where each of the
spinors can only be singly occupied. This corresponds to a
degeneracy breaking analogous to the JT effect and can affect
the electronic structure, which is shown later in our discussions
about [Tl6]

6− clusters. Similar analyses have been done with
octahedral clusters of transitional metal hexafluorides.56 Jahn−
Teller coupling Hamiltonians for an octahedral environment
including SOC terms up to first order were given recently.57

■ RESULTS AND DISCUSSIONS

The Electronic Structure of Tl Cluster Compounds. It
is important to keep in mind that treating the Tl clusters as
excised polyanions is a quite substantial approximation. Instead
of being isolated, they are all embedded in extented structures
of intermetallics and suboxides. In order to elaborate the
interaction with the cationic sublattice and the relation of
localized and delocalized electrons, the underlying band
structures have to be studied. On the one hand, it is more
challenging to extract straightforwardly “conceptual compre-
hension” from band structures, on the other hand, the
calculations are not biased by the polyanion approximation
and, moreover, they offer the opportunity for an evaluation of
the validity of a pure cluster view.
The densities of states (DOS) of solid compounds

containing various thallium clusters (cf. Table 1) are compiled
in Figure 1. SOC was considered in all of the underlying
calculations, otherwise some cases (e.g., Cs4Tl2O,19

Cs18Tl8O6
20) may result in even qualitatively wrong electronic

structures in comparison to the experimental observations. In
the graphs shown in Figure 1, the semicore states (5s, 5p) of
cesium below −8 eV are omitted for clarity. In the suboxides,
the part of the DOS that is related to oxygen is accented in light
gray. The oxygen anion is surrounded exclusively by cations in
these compounds, thus a direct interaction with the thallium
cluster anions can be neglected in the further discussion.
At a first glance, all DOS graphs look very similar, showing

two distinct regions. In the energy range between −9 and −4
eV, sets of very narrow bands are apparent. They predom-
inantly have thallium 6s character. The integral of the DOS in

Table 2. Character Table of Oh (Bold) and Its Double Group Oh*

Oh* E 3C2, 3QC2 8C3 6C4 6C2′, 6QC2′ i 3σ, 3Qσ 8S6 6S4 6σd, 6Qσd Q 8QC3 6QC4 Qi 8QS6 6QS4

A1g 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
A2g 1 1 1 −1 −1 1 1 1 −1 −1 1 1 −1 1 1 −1
Eg 2 2 −1 0 0 2 2 −1 0 0 2 −1 0 2 −1 0
T1g 3 −1 0 1 −1 3 −1 0 1 −1 3 0 1 3 0 1
T2g 3 −1 0 −1 1 3 −1 0 −1 1 3 0 −1 3 0 −1
A1u 1 1 1 1 1 −1 −1 −1 −1 −1 1 1 1 −1 −1 −1
A2u 1 1 1 −1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 1
Eu 2 2 −1 0 0 −2 −2 1 0 0 2 −1 0 −2 1 0
T1u 3 −1 0 1 −1 −3 1 0 −1 1 3 0 1 −3 0 −1
T2u 3 −1 0 −1 1 −3 1 0 1 −1 3 0 −1 −3 0 1
E1/2,g 2 0 1 √2 0 2 0 1 √2 0 −2 −1 −√2 −2 −1 −√2
E5/2,g 2 0 1 −√2 0 2 0 1 −√2 0 −2 −1 √2 −2 −1 √2
F3/2,g 4 0 −1 0 0 4 0 −1 0 0 −4 1 0 −4 1 0
E1/2,u 2 0 1 √2 0 −2 0 −1 −√2 0 −2 −1 −√2 2 1 √2
E5/2,u 2 0 1 −√2 0 −2 0 −1 √2 0 −2 −1 √2 2 1 −√2
F3/2,u 4 0 −1 0 0 −4 0 1 0 0 −4 1 0 4 −1 0

Table 3. Direct Products between E1/2,g and All Vector Irreps

Journal of the American Chemical Society Article

dx.doi.org/10.1021/ja309852f | J. Am. Chem. Soc. 2012, 134, 19884−1989419887



this region corresponds exactly to the number of 6s atomic
orbitals in the clusters. As was shown previously for Cs8Tl8O
and Cs18Tl8O6,

20 these bands reflect the multiplicity and the
position of corresponding lone-pair related cluster MOs. The
splitting of these levels on the energy scale will be discussed
later in the section dealing with the excised clusters.
The second DOS region of interest is located on the energy

scale between −2 eV and the Fermi energy EF at 0 eV.
Neglecting the oxygen contributions in the suboxides, the
integrated DOS of these bands with mainly thallium 6p
character in all cases amounts to the number of thallium 6p-
electrons plus the formal charge rated under the assumption of
a complete charge transfer. This sum corresponds to the
number of skeletal electrons (cf. Table 1) in those cases where
a band gap exists at EF. This holds true for the first five
compounds shown in Figure 1 (KTl, Cs4Tl2O, Cs8Tl8O,
Cs18Tl8O and Na2K21Tl19). The clusters in these compounds
are characterized as “hypoelectronic” with 2n skeletal electrons
in [Tl6]

6− and [Tl9]
9− and (2n−2) skeletal electrons in [Tl8]

6−.
The only example in this class of semiconducting thallium
compounds which fulfills the counting rules for a closo cluster
according to Wade−Mingos (2n+2) is [Tl5]

7−. It is remarkable
that this is the only thallium cluster anion where a series of

clusters is known with a pseudoelement relation according to
Zintl−Klemm ([Tl5]

7− − [Sn5]
2−,[Pb5]

2−58 − [Bi5]
3+59,60). It

should be mentioned that there also exists such a relation
between [Tl6]

6− and the neutral Pb6 cluster, which recently has
been investigated theoretically.61

In the class of the semiconducting compounds a clear
correlation between the formal number of skeletal electrons
and the actual electron density distribution exists. This can be
demonstrated by comparing the effective charges obtained by a
topological analysis of the electron density (so-called Bader
charges62). Averaging the effective thallium charges of the
various clusters with 2n skeletal electrons we obtain a value
−0.64(7) e−. The corresponding values for (2n−2) clusters are
−0.48(5) and for the (2n+2) cluster −0.84(3). Thus a clear
distinction between the different cluster types is possible.
The assignment of a formal number of skeletal electrons as

well as their correlation to effective charges is less unambiguous
if the compound under discussion is metallic, which is the case
for the four compositions on the right side of Figure 1 (K10Tl7,
K8Tl11, Na2Tl, Na14K6Tl18Mg). An assignment of skeletal
electrons can most easily be achieved for K8Tl11. One itinerant
electron per Tl11 cluster, represented by the DOS at EF, is
separated by a distinct gap from the region of the DOS which is

Figure 1. Total densities of states, including SOC, of various thallium cluster compounds. The Fermi energy is shifted to 0 eV respectively. Parts with
predominant oxygen character are drawn in light gray.

Figure 2. K10Tl7: band structure, DOS and crystal view along [001]. Potassium atoms with high charge are represented by dark blue balls, those with
low positive charge by gray balls. The right image includes an isosurface of the electron density (0.0075 e−/Å3) of the bands above the gap at −0.42
eV up to EF (arrow in the DOS graph).
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related to the skeleton. The specification of a formal charge of
7− for [Tl11]

7− with (2n − 4) skeletal electrons thus appears to
be justified.
The situation is more complicated in K10Tl7. In the original

publication on K10Tl7, Kaskel and Corbett17 assigned a formal
charge of 7− to the Tl7 cluster, based on the bonding and
antibonding nature of EHMOs. The three extra electrons per
cluster, coming from the cationic sublattice, were regarded as
delocalized, inducing the metallic properties of the compound.
At first view, the band structure and the density of states
(Figure 2) support such an electron count. A gap is noticeable
at −0.42 eV, being even more pronounced in the SOC
calculations. The integral of the DOS between this gap and the
Fermi level (see arrow in Figure 2) amounts to exactly 3
electrons per cluster.
However, is it justified to regard these electrons consistently

as itinerant, and do all the cations contribute equally? The
topological analysis of the charge density yields a surprising
result. The potassium atoms marked by dark blue balls in
Figure 2 have an effective Bader charge of +0.60(1). Such a
charge is specific for the alkaline atoms in all compounds
investigated so far and can be related to a formal charge of +1.
In contrast, the potassium atoms marked by gray balls in Figure
2 have a significantly lower positive charge, ranging from +0.25
to +0.46. The discrimination of the different potassium sites
reveals the layered arrangement of the atoms in the crystal.
The layered characteristics of the structure is also reflected by

the partial charge density originating from the bands between
the gap at −0.42 eV and EF (Figure 2). Indeed, significant
maxima of the charge density are found in the layers formed by
the “gray” potassium atoms. But another portion of the charge
density surrounds the Tl7 pentagonal bipyramids, resembling
the shape of a diffuse cluster MO. The band structure itself
indicates a differentiation of these extra electrons. Flat as well as
steep bands are found in the respective energy range. This
suggests a description as [Tl7]

9− plus one extra electron, rather
than [Tl7]

7− plus three extra electrons. The diffuse outer cluster
orbital, although antibonding and separated by a gap from the
other cluster orbitals, may be considered to be stabilized by the
interaction with the itinerant electrons.
The two remaining metallic compounds, Na2Tl and

Na14K6Tl18Mg, attract attention as they contain, from a formal
viewpoint, particular clusters, the so far singular (2n + 4)
tetrahedral cluster in Na2Tl, which is a Wade−Mingos nido
cluster, and the regular octahedral [Tl6]

8−, a “true” Wade
cluster in Na14K6Tl18Mg. However, in both cases it is difficult to
figure out the amount of itinerant electrons and their
interaction with the localized cluster MOs. As a further caveat,
one needs to keep in mind that syntheses of well-defined single
phase samples of these intermetallics are not at all trivial and, in
particular, the multicomponent representatives are easily
affected by nonstoichiometry and occupational disorder. For
Na2Tl and Na14K6Tl18Mg the available experimental data do
not appear fully settled and deserve reinvestigation. We
therefore have omitted these two candidates from our further
considerations.
Assessing the Effects of JT and SOC with the Example

of KTl. The JT effect and SOC are independent or joint
mechanisms capable of lifting the degeneracy of the frontier
orbitals and inducing a closed-shell electronic configuration for
the compounds with anionic Tl clusters. In order to elaborate
on the nature of these two mechanisms, we compare the
electronic structures of the experimental KTl, featuring

“compressed” [Tl6]
6− octahedral clusters, and a hypothetical

polymorphic model structure, containing [Tl6]
6− clusters with

regular Oh symmetry.
The crystal structure of KTl is shown in Figure 3a, which

contains [Tl6]
6− clusters with a “compressed” octahedral

geometry displaying C2h (very close to D4h) instead of Oh
symmetry. The formal charge of the cluster is 6−. Out of the 24
valence electrons, 12 are 6s lone pairs and the remaining 12 are
6p electrons providing skeletal bonding. A Wade−Mingos
octahedral closo cluster, however, requires 2 × 6 + 2 = 14
electrons for skeletal bonding. So the formal [Tl6]

6− is deficient
in electron count by 2 and thus “hypoelectronic”.
Its density of states (DOS) and band structure (non-SOC)

are shown in Figure 4. The flat bands located between −9 and
−4 eV are related to the inert pairs as discussed before. The
states below EF are contributed dominantly by Tl 6p and K 4s,
indicating that K does not donate all valence electrons
effectively to Tl, which is in accordance with the Bader’s
charge analyses above. However, the PDOS ratio between Tl
and K apparently shows that Tl dominates the states below EF
and K dominates those above, implying charge transfer from K
to Tl. So KTl has ionic characteristics and treating the [Tl6]

6−

as a polyanion is not stringent but plausible. We also plotted
the charge density isosurfaces of the bands below and around
EF. Electrons in these bands are concentrated around the Tl
atoms and they reveal apparent skeletal-bonding characteristics
within the [Tl6]

6− clusters.
The band gap at EF (∼0.15 eV) manifests that the

experimental KTl has the exact number of electrons to achieve
a closed-shell configuration, in agreement with the diamagnet-
ism of KTl,14 and in contradiction with the “hypoelectronicity”

Figure 3. Unit cell and the geometry of the [Tl6]
6− octahedron in (a)

real KTl with C2h [Tl6]
6− and (b) hypothetical KTl with Oh [Tl6]

6−.
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as suggested by Wade−Mingos’s rules. This discrepancy was
attributed in previous works10,14−16 to the JT effectin
Wade−Mingos’s concept octahedral clusters should have
regular Oh symmetry. The symmetry lowering and the
associated degeneracy breaking of the partially filled HOMO
lends KTl a closed-shell electron configuration. We can confirm
this argument here with our hypothetical KTl model structure
whose [Tl6]

6− clusters have Oh symmetry (Figure 3b, more
details of this hypothetical model structure are available in the
Supporting Information). Its electronic structure is shown in
Figure 5. In contrast to the real KTl, EF does not fall into a gap

but crosses a peak of the DOS curve in the hypothetical model
structure. However, there is a pseudogap at ∼0.4 eV above EF.
Integrating DOS from EF to this pseudogap gives 2 electrons
per (K6Tl6) unit. So KTl with ideal Oh [Tl6]

6− clusters would
have an open-shell configuration and would require 2 more
electrons per (K6Tl6) unit to reach a virtually closed-shell
configuration. This is reminiscent of the 2 electron deficiency of
[Tl6]

6− compared to Wade−Mingos rules. Therefore, the
comparison between the real and the hypothetical KTl confirms
that the Oh-to-C2h geometric “compression” of the [Tl6]

6−

clusters opens a band gap at EF, reconciles the electron

deficiency with respect to Wade−Mingos rules, and renders
KTl an electron exact closed-shell compound.
However, when applying an analogous JT-based analysis to

Cs4Tl2O,
19 whose Tl clusters are also formally [Tl6]

6− but have
symmetry very close to Oh (D3 to be precise, and the edge
lengths are 3.200(1) and 3.230(2) Å), problems are
encountered. Analogous to hypothetical KTl, the electronic
structure calculation of Cs4Tl2O considering only scalar
relativistic effects (just like the calculations above) gives an
open-shell electronic configuration. However, magnetometry
reveals that Cs4Tl2O is diamagnetic,19 suggesting a closed-shell
configuration, which can be rationalized only when the
relativistic SOC in Tl is appropriately taken into account
(Figure 1). This SOC effect can also be demonstrated here for
our hypothetical KTl model structure, whose DOS and band
structure are shown in Figure 6a. It is in sharp contrast with the
non-SOC result in Figure 5. Apparently, due to the relativistic
SOC effect, the Oh [Tl6]

6− clusters can also afford a pseudogap
at EF. So the hypothetical KTl does not require 2 more
electrons per (K6Tl6) unit to achieve a closed-shell config-
urationit is already (almost) closed-shell. Therefore, even
without JT distortion, SOC alleviates the “hypoelectronicity”
with respect to Wade−Mingos rules. This means that a
different electron counting scheme is required to rationalize the
clusters formed by heavy elements featuring significant
relativistic SOC effects.
In real KTl (Figure 6b), JT and SOC cooperatively effect an

enhanced band gap opening (∼0.19 eV) at EF. Finally, we can
achieve a quantitative evaluation of the impact of JT and SOC
by comparing the respective total energy values of the real and
hypothetical KTl. When SOC is ignored, real KTl is lower in
energy than the hypothetical by 0.21 eV per (K6Tl6) unit,
indicating that the JT effect favors the structure with
“compressed” [Tl6]

6−. When SOC is considered, although the
real KTl is still energetically favorable, its energy advantage over
the hypothetical KTl drops to only 0.09 eV per (K6Tl6) unit.
So, apparently, SOC substantially stabilizes the structure with
undistorted Oh [Tl6]

6−, making it energetically more com-
petitive.

Excised Clusters [A8Tl6]
2+ and A8Tl6. As mentioned

above, treating the [Tl6]
6− cluster as an isolated polyanion is

Figure 4. Non-SOC electronic structure of KTl (real structure with C2h [Tl6]
6−): the DOS of KTl (black, Tl s; gray, Tl p; white, K), the ratio

between Tl and K PDOS, the band structure of KTl, and the electron density isosurfaces (∼0.001 e−/Å3) of the selected bands at Z point.

Figure 5. Non-SOC DOS and band structure of the hypothetical KTl
with Oh [Tl6]

6− (black, Tl s; gray, Tl p; white, K).
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not stringent but a plausible approximation. Most of the
previous works are based on calculations assuming high formal
charges, which causes no problem on the extended Hückel level
of theory. For our first-principle DFT calculations, however, the
highest orbitals of such negatively charged clusters would be
unbound due to the Coulomb repulsion of the electrons. So, as
demonstrated previously on Cs18Tl8O6,

20 we have to
compensate the charges by adding alkali metal cations. For
instance, we use [Cs8Tl6]

2+ as a model for the [Tl6]
6− cluster

(upper graphs in Figure 7) and Cs8Tl6 models the Wade
analogue [Tl6]

8− (lower graphs in Figure 7). The alkali metal
cations cap the eight faces of the octahedron.
We have demonstrated the superimposing stabilization

caused by JT and SOC in the previous chapter with band
structure calculations. By focusing on the charge compensated
excised clusters, we can provide a more sophisticated and
comprehensive demonstration by monitoring the total energy
of the excised [Cs8Tl6]

2+ and Cs8Tl6 clusters as a function of
the distortion of the octahedron. These results are shown as
one-dimensional cross sections of energy landscapes (see
Figure 7). For each point on the line, the ratio of the edge
lengths R(basal)/R(apical) was fixed and all other structural
parameters were optimized, while constrained to D4h symmetry.
For the scalar relativistic calculations (non-SOC) within the

unrestricted open-shell Kohn−Sham formalism (UKS), the
spin-state is fixed for each energy landscape. On the left column
of Figure 7 we show the lowest lying singlet and triplet curves.
In contrast, the spin and orbital moments are coupled in the
two-component calculations (SOC, Figure 7 right column) and

the (fractional) number of unpaired electrons NS (eq 2) may
vary along a scan line. All the minima of the ΔE curves in
Figure 7, with one exception, the upper left minimum in the
SOC curve of Cs8Tl6 with R(basal)/R(apical) < 1 (lower right
graph in Figure 7), are real local minima on the energy
landscapes, as the respective Hessian matrices have no negative
eigenvalues.
The inspection of the ΔE diagrams reveals clearly qualitative

and quantitative differences between the non-SOC and the
SOC cases. The lowest non-SOC minimum is a singlet state
with a fully occupied eu-HOMO and an a2u-LUMO,
representing a compressed polyhedron. When the edge length
ratio R(basal)/R(apical) approaches, and goes beyond, unity, a
triplet state, although substantially higher in energy, becomes
more favorable (HOMO, half filled eu; LUMO, eu). With
inclusion of SOC (Figure 7 upper right graph), the cluster is a
closed-shell system all along the scan. Moreover a second
minimum appears at an edge ratio of 1.0, corresponding to a
regular octahedron. The energy difference of both minima of
the energy landscape is as small as 4.5 kJ/mol. Thus both
minima become competitive and both configurations have
actually been observed experimentally.19

With the Wade analogue [Tl6]
8− in Cs8Tl6, both, the singlet

(HOMO, a2u; LUMO, eu) and the triplet (HOMO, half-filled
eu; LUMO, a2u) correspond to a compressed octahedron in the
scalar relativistic approximation. The singlet is more favorable
at lower edge ratios (Figure 7 lower left). Again, there is a
significant change in the characteristics of the energy landscape,
if SOC is considered. The ΔE curve is more flat and the cluster
becomes an open-shell system (NS < 1.66) with lower edge
ratios. As demonstrated here on the example of excised charge-
compensated Tl6

6− cluster anions, performing a full relativistic
treatment has enabled us to reconcile apparently contradictory
experimental observation of distorted and undistorted clusters
in spite of identical numbers of skeletal electrons.
Besides assessing the total energies involved, these studies

into excised clusters can also provide us with a deeper
understanding of how JT and SOC affect electronic structures
and electron configurations. Figure 8 displays the non-SOC
molecular orbital (MO) diagram of a [K8Tl6]

2+, whose
structure was optimized with its symmetry restrained to C2h,
mimicking the [Tl6]

6− clusters in KTl. The resulting [K8Tl6]
2+

has, however, a symmetry of D4h. The lowest 6 MOs from 1a1g
to 2a1g are mainly composed of spherical Tl 6s orbitals. The
splitting of these levels on the energy scale arises from the
nodal structure of the canonical orbitals. A localization
procedure leads to degenerate local orbitals at the single
thallium sites (basal, −13.14 eV; apical, −13.09 eV) consisting
predominantly of the s functions at the respective site. This
reveals the “inert” pair characteristics of Tl 6s electrons, and is
in agreement with the band structure calculations.
The MOs from 1eg to 2eu are cluster-bonding MOs, and they

bear evident resemblance in topology with the charge density
maps of the KTl bands shown in Figure 4. Also like KTl, the
D4h [K8Tl6]

2+ has closed-shell electron configuration with a
HOMO−LUMO gap of 1.43 eV. All of these consistencies
between KTl band structure and [K8Tl6]

2+ MO diagram prove
that the excised cluster can really serve as good approximation
for the complete solid.
We also optimized the structure of [K8Tl6]

2+ by restricting
the symmetry to Oh. When SOC is ignored, it has an open-shell
electron configuration (Figure 9, Oh non-SOC). Each of the
three degenerate 2t1u HOMOs has an average occupancy of 4/

Figure 6. The SOC DOS curves and band structures of (a)
hypothetical KTl with Oh [Tl6]

6− and (b) real KTl with C2h [Tl6]
6−

(black: Tl s; gray: Tl p; white: K).
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3. With two more electrons, it would achieve a closed-shell
configuration and satisfy Wade−Mingos rules. This is
consistent with the electron deficiency shown above in the
non-SOC band structure of the hypothetical KTl with Oh
[Tl6]

6− clusters (Figure 5).
The band structure calculations have revealed that JT and

SOC can both open a band gap at EF, thus affording a closed-
shell electronic configuration for KTl. The mechanism of this
band gap opening can be illustrated by comparing the non-

SOC MO diagrams and the SOC spinor diagrams of the D4h
[K8Tl6]

2+ and the Oh [K8Tl6]
2+ in Figure 9. It shows that JT

and SOC can both break the degeneracy of the partially
populated 2t1u shell and lead to a closed-shell configuration and
a large HOMO−LUMO gap. JT effect reduces the symmetry of
[K8Tl6]

2+ from Oh to D4h, the irrep T1u of Oh decomposes into
Eu ⊕ A2u in D4h. So the 2t1u shell splits into fully occupied 2eu
and empty 3a2u shells. SOC has a similar effect. As mentioned

Figure 7. One-dimensional scan through the energy landscapes of [Cs8Tl6]
2+ (upper graphs) and Cs8Tl6 (lower graphs). The left ordinate represents

the energy relative to the minimum of the scan line (ΔE), the right one the Tl−Tl distances. The left graphs show the results of scalar relativistic
DFT calculations (unrestricted KS singlet and triplet), and the right ones are based on two-component DFT including SOC. In addition, the lower
right graph shows bars representing the number of unpaired electrons NS (eq 2) (<1.66).

Figure 8. Molecular orbital energy levels of D4h [K8Tl6]
2+ and their

isosurface sketches (black, occupied; gray, empty). Figure 9.Molecular orbitals (non-SOC) and spinors (SOC) of Oh and
D4h [K8Tl6]

2+ (black, occupied; gray, empty).

Journal of the American Chemical Society Article

dx.doi.org/10.1021/ja309852f | J. Am. Chem. Soc. 2012, 134, 19884−1989419892



above, T1u of point group Oh is subduced into two spinor irreps
in the double group Oh*, F3/2,u ⊕ E1/2,u. So when SOC is
considered, the 2t1u HOMO shell splits into fully occupied
1f3/2,u and empty 1e1/2,u. (The correspondence between orbitals
and spinors are established by examining their isosurface maps,
details are given in Supporting Information.) Furthermore,
when SOC and JT are both evaluated, the 1f2/3,u shell further
split into the 1e1/2,u and 1e3/2,u shells in D4h SOC, with both of
them occupied and the former lowering significantly in its
energy. This energy lowering occurs at the expense of the
energy rise from the empty 1e1/2,u shell in Oh SOC to the 2e1/2,u
shell in D4h SOC. So with SOC, the Oh-to-D4h distortion
corresponds to a second-order JT effect.
In conclusion, as demonstrated with both crystals and excised

clusters, JT and SOC energetically stabilize the formal [Tl6]
6−

by opening a gap. For the compounds whose [Tl6]
6− clusters

have ∼Oh symmetry, such as Cs4Tl2O and the hypothetical
KTl, SOC is the only stabilization mechanism. For those
compounds with geometrically “compressed” [Tl6]

6− clusters,
such as KTl, CsTl, and A10Tl6O2 (A = alkali metal), the
stabilization is due to the cooperative effects of SOC and
second order JT.
The reconciliation of electron deficiency by JT and SOC is

not unique to the compounds with formal [Tl6]
6− clusters, but

can also be applied to all the other “hypoelectronic” Tl cluster
compounds with closed-shell electronic configurations listed in
Figure 1. We have successfully rationalized the isomeric [Tl8]

6−

clusters in Cs18Tl8O6 and Cs8Tl8O in our previous report with
similar arguments.20 Besides, Na2K21Tl19 is also electron exact
although it has the “hypoelectronic” formal [Tl9]

9− clusters.13

This can be rationalized as the result of a JT distortion starting
from the Wade−Mingos closo geometry, a tricapped trigonal
prism. Details are in the Supporting Information.

■ CONCLUSIONS
We present the results of calculations and analyses to resolve
the enigma of thallium cluster anions. For the vast majority of
inorganic cluster compounds, there exist qualitative concepts,
with which one can reconcile the number of valence electrons
in a cluster with its topology and stability. Such approaches as
the Zintl−Klemm concept or Wade−Mingos’s rules may fail,
however, when applied to thallium cluster anions. Since all the
thallium clusters defying the heuristic systematics have in
common less skeleton electrons than the required by the rules
mentioned, they were classified as “hypoelectronic”. This term,
however, is just a designation and does not provide any
explanation.
While including all homoatomic and noncentered thallium

clusters, we give particular emphasis to the cases of [Tl6]
6− and

[Tl8]
6− clusters, featuring most intricate ramifications. Intrigu-

ingly, for the same number of cluster atoms and the same
electron counts, different geometries were encountered
experimentally. At the same time, clusters of both respective
geometries experienced electronic stabilization as indicated by
HOMO−LUMO gaps opening. [Tl6]

6− exists as an ideal (∼Oh)
and compressed (∼D4h) octahedron in different compounds
featuring closed-shell electron configurations. For [Tl8]

6−, the
most regular structure possible, a cube, is not realized. Instead,
two substantially different distortion variants, the “tetrahedral
star” and “parallelpiped” topologies, were found experimentally.
Our band structure calculations on the complete exper-

imental extended structures as well as electronic structure
calculations on geometry optimized and charge compensated

excised clusters on two different levels of theory, scalar
relativistic and full relativistic including SOC, have revealed
that the thallium compounds investigated experience electronic
stabilization by JT distortion and relativistic SOC, independ-
ently, or concomitantly in a synergic fashion.
Cs4Tl2O, for instance, contains a regular octahedral cluster

[Tl6]
6− as constitutional component and has been shown to be

diamagnetic. Such a cluster would require two more electrons
in order to fulfill Wade’s rules, and thus was addressed as
“hypoelectronic”. However, a full relativistic treatment has
revealed that considering SOC opens a gap, thus lifting the
degeneracy of the partly filled HOMO (in a scalar relativistic
analysis). In experimental KTl, a band gap opens due to a
symmetry reduction of the [Tl6]

6− cluster from Oh to D4h.
Here, the electronic stabilization is further enhanced by SOC.
Similarly, as reported in our previous work,20 for D3d [Tl8]

6− in
Cs8Tl8O, the JT effect is sufficient to open a gap, while the
existence of the tetrahedral star configuration (Td) of [Tl8]

6− in
Cs18Tl8O6 can only be understood if fully relativistic theory is
applied.
The two major factors of influence, JT distortion and SOC,

thus generate energy landscapes of thallium cluster compounds,
which feature for species with identical number of atoms per
cluster and identical overall charges different local minima,
corresponding to different structures. With respect to total
energies, there is still a hierarchical order; e.g., Td [Tl8]

6− is
more stable than the D3d variant. Which one of these
intrinsically stable clusters topologies are realized in a specific
extended solid is subject to the minimization of the total energy
of the latter.20

As a quintessence, we conclude that the term “hypoelec-
tronic” is not appropriate to describe thallium cluster anions.
On the contrary, the clusters encountered thus far appear to be
electronically saturated. This view is also receiving support from
the experimental conditions at which such compounds are
synthesized, namely, applying an excess of the respective alkali
metal, which, due to its extremely low work function, provides
abundant electrons.
Finally, our findings allow us to qualitatively analyze heavy

atoms’ clusters on an improved level of understanding. The
recipe to be followed can be extracted from Figure 9. One
performs two independent group theoretical analyses, starting
from an aristotypical topology (of the highest symmetry
possible). In one procedure, reductions in point group
symmetry are identified that are suited to lift the degeneracy
(of partly filled frontier orbitals) and to open a gap (JT effect).
Second, applying the double group approach, the splittings of
the electronic states caused by SOC are analyzed, while keeping
the symmetry unchanged. Finally, a superposition of both
effects, if applicable, yields the combined impact. In this way, it
is possible to rationalize which distortion and which SOC-
induced splittings of the electronic states involved are suited to
generate a closed-shell electronic configuration for a cluster of
given atom and electron count.
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Wien: Austria, 2001; ISBN 3-9501031-1-2.
(34) Kresse, G.; Furthmüller, J. Phys. Rev. B 1996, 54, 11169.
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